

European Journal of Pharmacology 402 (2000) 205-207



www.elsevier.nl/locate/ejphar

## Rapid communication

# β-Funaltrexamine inactivates ORL1 receptors in BE(2) -C human neuroblastoma cells

Chitra D. Mandyam, Ghazi F. Altememi, Kelly M. Standifer \*

Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX 77204-5515,USA

Received 10 July 2000; accepted 14 July 2000

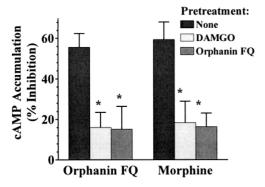
#### **Abstract**

The potential interactions of natively expressed  $\mu$ -opioid and opioid receptor-like (ORL1) receptors were studied by exposing intact BE(2)-C cells to agonists or antagonists for 1 h. Pretreatment with the  $\mu$ -opioid receptor agonist, [D-Ala², N-Me-Phe⁴,Gly⁵-ol]enkephalin (DAMGO), or the ORL1 receptor agonist, orphanin FQ/nociceptin desensitized both  $\mu$ -opioid and ORL1 receptor responses.  $\beta$ -Funaltrexamine ( $\beta$ -FNA) pretreatment also blocked both  $\mu$ -opioid and ORL1 receptor responses, but only  $\mu$ -opioid receptor binding was reduced. Moreover,  $\beta$ -FNA (1  $\mu$ M) failed to inhibit specific ORL1 receptor binding. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: μ-Opioid receptor; cAMP accumulation; Orphanin FQ/nociceptin

Orphanin FQ/nociceptin is the endogenous ligand for the opioid receptor-like (ORL1) receptor (also known by other names, including KOR-3, XOR1, LC132, ROR-C) and modulates a wide variety of behavioral responses including nociceptive sensitivity, anxiety, learning and reward (Harrison and Grandy, 2000). The ability of a μ-opioid receptor agonist to modulate orphanin FQ/nociceptin-mediated analgesia (and vice versa) varies depending on time, dose and site of administration, as does blockade of orphanin FO/nociceptin-mediated analgesia by the irreversible  $\mu$ -opioid receptor antagonist,  $\beta$ funaltrexamine (β-FNA; Hao et al., 1997; Jhamandas et al., 1998). In vitro effects of μ-opioid and ORL1 receptor agonist pretreatments on  $\mu$ -opioid receptor and ORL1 receptor-mediated activity are even less clear. In Chinese hamster ovary cells expressing recombinant  $\mu$  and ORL1 receptors, Hawes et al. (1998) reported that orphanin FQ/nociceptin, but not [D-Ala<sup>2</sup>, N-Me-Phe<sup>4</sup>, Gly<sup>5</sup>-ol]enkephalin (DAMGO), pretreatment decreased both orphanin FQ/nociceptin and DAMGO-stimulated mitogen activated protein kinase activity. In the present study, we describe a potential role for the μ-opioid receptor in ORL1 receptor activity in BE(2)-C human neuroblastoma cells, a cell line

E-mail address: standifer@uh.edu (K.M. Standifer).


natively expressing  $\mu$ -,  $\delta$ -,  $\kappa_3$ - and ORL1 opioid receptors (Standifer et al., 1994; Mathis et al., 1999).

Liquiscint scintillation cocktail and [<sup>3</sup>H]DAMGO (40.9 Ci/mmol) were purchased from National Diagnostics (Atlanta, GA) and Amersham (Arlington Heights, IL), respectively. [<sup>3</sup>H]orphanin FQ/nociceptin (51 Ci/mmol), orphanin FQ/nociceptin, DAMGO and β-FNA were obtained from the Research Technology Branch of the National Institute on Drug Abuse (Rockville, MD). All other chemicals and reagents were purchased from Sigma-Aldrich (St. Louis, MO).

BE(2)-C cells (passage 25–45; Dr. Robert Ross, Fordham University, Bronx, NY) were grown to 80–90% confluence and pretreated with vehicle (buffer or 0.1% methanol), agonist (0.1 nM orphanin FQ/nociceptin or 1 μM DAMGO) or antagonist (1 μM β-FNA dissolved in methanol) for 1 h at 37°C in culture media absent of sera. At the end of the incubation, cells were washed four to five times with ice-cold phosphate-buffered saline and assayed for receptor binding or cAMP accumulation. [3H]orphanin FQ/nociceptin and [3H]DAMGO binding to BE(2)-C membranes (0.6–1 mg/ml) was performed as described (Ardati et al., 1997; Standifer et al., 1994). The ability of orphanin FQ/nociceptin or DAMGO to inhibit forskolin (10 µM)-stimulated cAMP accumulation was determined in intact cells over a 10-min period (Standifer et al., 1994). Determination of LogEC<sub>50</sub> values was performed using nonlinear regression analysis and statistical

<sup>\*</sup> Corresponding author. Tel.: +1-713-743-1771; fax: +1-713-743-1229.

#### A: Agonist Pretreatment



#### **B:Antagonist Pretreatment**

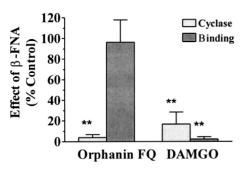



Fig. 1. Orphanin FQ/nociceptin-mediated inhibition of forskolin-stimulated cAMP accumulation in BE(2)-C cells is sensitive to μ-opioid agonist (A) and antagonist (B) treatments. (A) Intact cells were assayed for the ability of orphanin FQ/nociceptin (0.1 nM) or morphine (1 μM) to inhibit forskolin (10 μM)-stimulated cAMP accumulation after a 1 h pretreatment with DAMGO (1 μM) or orphanin FQ/nociceptin (0.1 nM).  $^*P < 0.01$  by ANOVA compared to controls; n = 3-4. (B) Intact cells were treated with β-FNA (1 μM) for 1 h prior to assay of orphanin FQ/nociceptin-(0.1 nM) and DAMGO-(10 μM) mediated inhibition of forskolin-stimulated cAMP accumulation and  $[^3H]$ orphanin FQ/nociceptin (1 nM) and  $[^3H]$ DAMGO (1 nM) binding.  $^{**}P < 0.05$  by t-test compared to controls, n = 3.

comparisons were made using an unpaired *t*-test or analysis of variance (ANOVA) as indicated (GraphPad Prism Version 3.00 for Windows 95/98, GraphPad Software, San Diego, CA, USA, www.graphpad.com).

Orphanin FQ/nociceptin and DAMGO inhibited cAMP accumulation (-LogEC<sub>50</sub> values:  $12.43 \pm 0.45$  and 6.65 $\pm$  0.33, respectively), consistent with previous reports (Mathis et al., 1999; Standifer et al., 1994). Pretreatment of BE(2)-C cells for 1 h with an ORL1 (orphanin FQ/nociceptin) or μ-(DAMGO) opioid receptor agonist desensitized the response of both receptors (Fig. 1A,  $^*P$  < 0.01 by ANOVA compared to control; n = 3-4). The maximal ORL1 receptor response to orphanin FQ/nociceptin (0.1 nM) was reduced over 70% by both treatments; concentration-response curves were flattened to such an extent that LogEC50 values could not be accurately estimated after treatment. The  $\mu$ -opioid receptor response to a single concentration of morphine  $(1 \mu M)$  was reduced by both treatments, as well. To rule out any contribution of the μ-opioid receptor to the orphanin FQ/nociceptin re-

sponse, cells were pretreated with 1 μM β-FNA, a concentration sufficient to reduce μ-opioid receptor binding and inhibition of DAMGO-mediated cAMP accumulation by 95% and 87%, respectively (Fig. 1B; \* \* P < 0.05 by t-test, compared to controls:  $4.8 \pm 1.6$  fmol/mg protein and  $75.4 \pm 1\%$ , respectively). Surprisingly,  $\beta$ -FNA treatment also completely blocked the ability of orphanin FQ/nociceptin to inhibit cAMP accumulation compared to vehicle-treated controls (65.6  $\pm$  16.7%), but had no effect on basal or forskolin-stimulated levels of cAMP (54.6  $\pm$ 11.9 and  $130 \pm 28$  pmol/mg, respectively). Again, LogEC<sub>50</sub> values could not be accurately estimated after pretreatment. This blockade did not appear to be mediated through the ORL1 receptor because the same β-FNA pretreatment failed to reduce specific [3H]orphanin FQ/nociceptin binding (Fig. 1B; vehicle-treated control  $35.8 \pm 6.48$  fmol/mg protein; n = 3). In a separate study, 1 and 10 μM β-FNA failed to inhibit specific [3H]orphanin FQ/nociceptin (1 nM) binding (84.7  $\pm$  17.7% and 74  $\pm$ 21.6% control, respectively; n = 3); a  $K_i$  value for  $\beta$ -FNA at that site could not be determined.

 $\beta$ -FNA covalently binds to Lys<sup>233</sup> of the  $\mu$ -opioid receptor (Chen et al., 1996). This residue is conserved among all opioid receptors, except ORL1; the selective irreversible nature of  $\beta$ -FNA appears to result from tertiary structures specific to the  $\mu$ -opioid receptor (Chen et al., 1996). Clearly, the actions of  $\beta$ -FNA on orphanin FQ/nociceptin receptor activity are not mediated through the orphanin FQ/nociceptin binding site on ORL1. These findings suggest that cross talk between  $\mu$ -opioid and ORL1 receptors, distinct from the binding site, may contribute to ORL1 function.

### Acknowledgements

This work was supported, in part, by a grant from the National Institute on Drug Abuse at the National Institutes of Health to KMS (DA10738).

#### References

Ardati, A., Henningsen, R.A., Higelin, J., Reinscheid, R.K., Civelli, O., Monsma, F.J. Jr., 1997. Interaction of [<sup>3</sup>H]orphanin FQ and <sup>125</sup>I-Tyr14-orphanin FQ with the orphanin FQ receptor: kinetics and modulation by cations and guanine nucleotides. Mol. Pharmacol. 51, 816–824.

Chen, C., Yin, J., de Riel, J.K., DesJarlais, R.L., Raveglia, L.F., Zhu, J., Liu-Chen, L-Y., 1996. Determination of the amino acid residue involved in  $[^3H]\beta$ -funaltrexamine covalent binding in the cloned rat  $\mu$  opioid receptor. J. Biol. Chem. 271, 21422–21429.

Hao, J-X., Wiesenfeld-Hallin, Z., Xu, X-J., 1997. Lack of cross-tolerance between the antinociceptive effect of intrathecal orphanin FQ and morphine in the rat. Neurosci. Lett. 223, 49–52.

Harrison, L.M., Grandy, D.K., 2000. Opiate modulating properties of nociceptin/orphanin FQ. Peptides 21, 151–172.

Hawes, B.E., Fried, S., Yao, X., Weig, B., Graziano, M.P., 1998.

- Nociceptin (ORL-1) and (-opioid receptors mediate mitogen-activated protein kinase activation in CHO cells through a Gi-coupled signaling pathway: evidence for distinct mechanisms of agonist-mediated desensitization. J. Neurochem. 71, 1024–1033.
- Jhamandas, K.H., Sutak, M., Henderson, G., 1998. Antinociceptive and morphine modulatory actions of spinal orphanin FQ. Can. J. Physiol. Pharmacol. 76, 314–324.
- Mathis, J.P., Goldberg, I.E., Chang, A.H., Ryan-Moro, J., Altememi,
- G.F., Standifer, K.M., Pasternak, G.W., 1999. Characterization of Orphanin FQ/Nociceptin binding in BE(2)-C human neuroblastoma cells. Soc. Neurosci. Abstr. 25, 1473.
- Standifer, K.M., Cheng, J., Brooks, A.I., Honrado, C.P., Su, W., Visconti, L.M., Biedler, J.L., Pasternak, G.W., 1994. Biochemical and Pharmacological characterization of Mu, Delta, and Kappa<sub>3</sub> opioid receptors expressed in BE(2)-C neuroblastoma cells. J. Pharmacol. Exp. Ther. 270, 1246–1255.